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Significance

 What is going on in the brain 
when people make decisions, 
particularly when it comes to 
everyday experiences such as 
choosing between different 
songs to listen to? This study 
investigates the role of the 
hippocampus, a key memory 
region, in predicting choices 
involving such everyday 
experiences. Using deep-learning 
models that integrate natural-
language-processing approaches 
and neuroimaging data, we 
identify a neurophysiological 
mechanism linked to people’s 
﻿experiential  risk-taking behavior—
hippocampal activity—and 
compare this finding to the 
established literature on people’s 
﻿monetary  risk-taking behavior.
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This research investigates the neurophysiological mechanisms of experiential versus 
monetary choices under risk. While ventral striatum and insula activity are instru-
mental in predicting monetary choices, we find that hippocampal activity plays a key 
role in predicting experiential choices, which we theorize is due to its role in retrieving 
autobiographical memories. This neurophysiological differentiation clarifies observed 
variations in risk preferences between experiential and monetary prospects and high-
lights the importance of domain-specific neurophysiological processes in shaping human 
decision-making.

experience theory | decision-making under risk | hippocampus | consumer neuroscience |  
marketing

 When people make choices under risk, what can brain activity reveal about these choices? 
For monetary choices, the answer seems clear. Activity in the ventral striatum, including 
the nucleus accumbens, has been reported to precede risky monetary choices ( 1 ,  2 ), while 
activity in the insula seems to precede riskless monetary choices ( 1 ,  3 ). However, it is 
unclear whether the same subcortical activity patterns apply to choices about everyday 
experiences. This gap in knowledge is striking, especially considering that most people 
make experiential choices daily, such as deciding between different songs to listen to, 
movies to watch, or restaurants to eat at. Intuitively, one could predict that the neuro­
physiological mechanisms of monetary choices may generalize to those of choices about 
everyday experiences. However, this intuition may be flawed as monetary decision-making 
is often driven by abstract, temporally proximate risk–reward assessments, which are 
believed to engage the ventral striatum and insula ( 4 ), whereas experiences frequently 
draw upon temporally distant emotional memories ( 5   – 7 ), which may rely on other sub­
cortical circuits.

 This lack in the neuroscientific understanding of human decision-making prompts a 
closer look at the behavioral research on choices under risk. Focusing on monetary choices, 
seminal work in behavioral economics—prospect theory—has consistently demonstrated 
that people tend to exhibit risk aversion for prospective monetary gains but display 
risk-seeking for prospective monetary losses ( 8 ,  9 ). However, experience theory suggests 
that people demonstrate opposite risk preferences for experiential (versus monetary) pros­
pects of the same magnitude, riskiness, and expected value—specifically, risk-seeking for 
prospective experiential gains but risk aversion for prospective experiential losses ( 10 ). 
Drawing from this theory, we expect that in experiential choices, people are likely to use 
extreme “best” or “worst” memories as personalized reference points. Consequently, they 
treat many positive experiences as shortfalls from the best memorable outcome—leading 
to risk-seeking in the positive domain—and most negative experiences as improvements 
over the worst-case memory—leading to risk-aversion in the negative domain. These 
memory-based reference points, therefore, diverge from prospect theory’s neutral status 
quo and, thus, offer an explanation for why risk preferences systematically reverse between 
monetary and experiential choices ( 10 ).

 For our purposes, an experiential choice option marks the subjective value people expect 
to gain or lose from engaging in a (nonmonetary) experience, such as listening to a song. 
We acknowledge that experiential domains are vast, ranging from everyday activities like 
music selection to high-stakes experiential pursuits such as freehand rock climbing and 
acrobatic flying, and the mechanisms we describe may not generalize to all such contexts—
especially when outcomes become highly consequential. Here, we focus on moderate-stakes 
everyday choices (i.e., deciding on a potentially enjoyable or disappointing song) where 
memories of prior positive or negative encounters form salient reference points. Specifically, 
we expect that when choosing between different positive experiential options varying in 
riskiness, people are more likely to prefer the riskier choice if it promises a highly enjoyable D
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outcome rather than settle for a safer, modestly pleasant one ( 10 ). 
This behavior arises because the reference point for an experiential 
choice is shaped by recalling the “best” or “worst” experiences that 
come to mind—a process we propose hinges on the hippocampus’s 
role in autobiographical memory retrieval ( 11       – 15 ). The vividness 
of these recalled experiences ( 16 ) can effectively tilt the decision 
frame, and thus heighten risk-seeking for prospective experiential 
gains yet prompt risk aversion for prospective experiential losses.

 In contrast, a monetary choice option reflects the subjective value 
people expect to gain or lose from engaging in a financial transac­
tion, typically referenced against one’s current wealth ( 8 ,  9 ). While 
risk preferences in these monetary scenarios may appear superfi­
cially similar to those seen in experiential situations, the underlying 
mechanism differs. Prospect theory improves on classical expected 
utility theory ( 17 ) by recognizing separate gain/loss value functions, 
but it still does not explicitly account for memory-shaped reference 
points that can dominate in experiential decision-making. The 
present work thus attempts to offer a glimpse into how memory 
retrieval and autobiographical salience might recalibrate perceived 
gains and losses in an experiential context—thus moving beyond 
both classic expected utility theory’s uniform utility function and 
prospect theory’s status-quo-based approach.

 Drawing from experience theory ( 10 ), we expect that it is more 
probable that consumers choose the risky option when making 
experiential (vs. monetary) choices in the realm of gains. We 
hypothesize that hippocampal activity selectively predicts experi­
ential choices, distinguishing them from the monetary decision 
domain and highlighting a neurophysiological pathway for under­
standing risk preferences for the experiential decision domain. By 
bridging established findings on hippocampal function in auto­
biographical memory retrieval ( 11       – 15 ), we theorize that hip­
pocampal activity specifically tracks the memory-shaped reference 
points guiding experiential choices. In particular, because the 
hippocampus can recall “best” or “worst” prior outcomes, there 
is a conceptual link to the vividly remembered contexts that shape 
experiential risk preferences. This region’s connectivity with affec­
tive and reward networks further supports the integration of emo­
tional memory. Consequently, we theorize that heightened 
hippocampal activation would predict risk-seeking for positive 
experiential prospects and risk aversion for negative ones, which 
illustrates how this subcortical mechanism influences risk-taking 
behavior beyond traditional monetary frameworks.

 To test the hypotheses, participants were engaged in a series of 
behavioral choices while a time series of functional magnetic res­
onance images (fMRI) recorded their brains’ blood oxygenation. 
We then employed deep-learning models that capture voxel-level 
activation patterns in the hippocampus—rather than a single 
aggregated activation metric—to predict participants’ choice 
behavior ( 18 ). For reasons of consistency, our study employed 
gain framing ( 19 ), where participants were told to anticipate both 
positive experiential and positive monetary outcomes. 

Experimental Design

 Our study employed a within-subjects, repeated-measures exper­
imental design with decision domain (experiential vs. monetary) 
as the independent variable and choice between a relatively riskier 
and a relatively safer option as the dependent variable. Choice 
between two experiential options was operationalized as choice 
between two songs in each participant’s preferred music genre 
and choice between two monetary options was operationalized 
as choice between two games of chance. The different choice 
options were identical in magnitude, riskiness, and expected value 
across the two decision domains. Blood-oxygen-level-dependent 

(BOLD) responses of the brain at specific regions of interest were 
assessed while participants made their choices.  

Participants

 Fifty-two human subjects were recruited to the neuroimaging lab 
at the University of Arizona in exchange for course credit, a $25 
cash endowment, and a selection of songs from their preferred 
music genre, which participants received after the study. Subjects 
were students at the university with backgrounds in business 
administration and/or economics. All subjects had normal or 
corrected-to-normal vision and were later determined by two 
independent MRI scientists (S.S. and A.H.) to have normal brain 
anatomy. We excluded seven participants from the analysis, leaving 
us with a usable dataset of 45 participants (Mage  = 21.67, SDage  = 
2.17; 51% female). The SI Appendix  details the exact reasons for 
exclusion (see the section titled Neuroimaging Data Collection ), 
which were independently determined and verified by the two 
MRI scientists.  

Experimental Procedures

 Upon arrival at the neuroimaging lab, participants were guided 
to a waiting room and handed a paper-and-pencil study package. 
Participants were screened for MRI eligibility based on factors 
such as prior medical conditions, pregnancy, or the presence of 
implanted ferrous materials, any of which could prevent them 
from undergoing scanning, and provided written informed con­
sent to a protocol approved by the University of Arizona’s 
Institutional Review Board. Participants were then asked to indi­
cate their most preferred music genre from a list of 22 genres such 
as classical, hip-hop, jazz, and rock.

 In order to put participants into a state of monetary gains, we 
then provided each with a $25 cash endowment. Our provision of 
money to participants meets extant guidelines on how to induce a 
state of monetary gains ( 9 ,  20 ) and also closely follows previously 
established procedures aimed to ensure incentive compatibility ( 20 ). 
Participants read on their paper-and-pencil study package: “The 
experimenter will provide you with $25 now. Please put the two 
bills in your pocket and take them inside the scan room with you. 
This money is yours to take. In one of the tasks today, we would 
like you to make monetary choices in different games of chance. 
During these games of chance, you might lose some or all of your 
$25 stake, retain it, or increase it.” Participants then responded to 
whether they had understood these instructions (yes/no; 100% of 
participants said yes) and to the question of how much of their $25 
endowment they could potentially lose (72% of participants 
responded to the correct answer that they could lose some or all of 
it). Participants then read: “To make these choices, we will need to 
introduce you to the following charts: Today’s task is designed to 
find out how you make choices between different games of chance 
based on the actual losses/winnings of other people. For each game 
of chance, we will show you a chart where the heights of the bars 
above a specific loss or winning indicate the number of people who 
lost or won, respectively. Please read the following example carefully: 
57 UA students participated in different games of chance with out­
comes from −$5 to +$5, −$5 being the worst, +$5 being the best. 
In this chart, five people lost $5, twelve people lost $4, and so on. 
Please study this chart for a minute:”.  Fig. 1  shows the monetary 
histogram that participants then studied.        

 Next, in order to put participants into a state of experiential 
gains, we had them anticipate that they would receive songs from 
their preferred music genre, which they had indicated earlier. The 
operationalization of experiential choices as choices between music D
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songs follows previously established practices ( 10 ) and our provi­
sion of songs to participants again aimed to ensure incentive com­
patibility as well as commensurability with any gains in the 
monetary condition. Participants read: “In addition to choices on 
games of chance, today’s task is also designed to find out how you 
make choices between different music songs based on the actual 
ratings other people have given.” Participants were then asked to 
fill in their preferred music genre, and then continued to read that 
they will choose between five different sets of songs and get to take 
home their 5 chosen ones. They were also shown a histogram 
where the heights of the bars above a number indicate the number 
of people who gave the song a particular rating, based on 57 
students having rated different songs on a scale from -5 to +5 
( Fig. 1 ). The experimenter then verbally asked each participant 
whether they had understood the histograms.

 Participants were then engaged in a practice version of the 
behavioral choice task on a laptop computer. The practice version 
of the task ensured that participants fully understood how the task 
worked and also guaranteed they did not feel time-pressured to 
make their decisions while in the scanner. Only when all their 
open questions were answered and participants provided their 
consent to proceed were they allowed to continue with the main 
task and placed horizontally inside the Siemens 3 T Skyra scanner. 
The behavioral choice task was projected onto a mirror right above 
the eyes and participants provided all behavioral responses via a 
standard button box.

 The behavioral choice task comprised ten trials in total, with 
five experiential trials and five monetary trials presented to par­
ticipants in pseudorandom order. Similar behavioral choice task 

designs have been used in both consumer neuroscience (e.g.,  21 , 
 22         – 27 ) and neuroeconomics (e.g.,  2 ,  28 ,  29 ). For each trial, par­
ticipants first saw a fixation cross to center their attention on the 
middle of the screen. Then, participants were prompted to the 
decision context (either experiential or monetary), shown two 
options to choose from, asked to make their choice, and finally 
shown a confirmation of their choice. Each choice involved a 
selection between two histograms, a high-variance (i.e., relatively 
riskier) option and a low-variance (i.e., relatively safer) option. 
﻿SI Appendix, Fig. S1  in the Supporting Information (SI ) depicts 
all histograms. Our operationalization of high-variance histograms 
as relatively riskier option and a low-variance histograms as rela­
tively safer option is based on the notion that variance reflects the 
level of risk surrounding potential outcomes ( 30 ). Accordingly, a 
high-variance option can produce drastically better or worse out­
comes, indicating greater unpredictability and thus higher risk. 
Conversely, a low-variance option typically yields outcomes that 
are more consistent and closer to an expected value, making it 
comparatively less risky. In the context of consumer ratings, a 
high-variance rating profile implies that previous consumers had 
significantly divergent experiences. This unpredictability intro­
duces greater risk about one’s own outcome. Meanwhile, a 
low-variance rating profile indicates more consistent experiences, 
lowering the chance of extreme disappointment or unexpectedly 
poor outcomes. In the experiential decision domain condition, 
the scale of the histograms was labeled from -5 to +5, signifying 
the rating outcomes. Participants could only view the histograms 
and did not hear the songs otherwise. They had to make their 
choices solely based on other consumers’ rating outcomes, similar 
to consumers choosing digital music products based on previous 
consumers’ rating outcomes in the Apple iTunes store. In the 
monetary condition, the scale of the histograms was labeled from 
-$5 to +$5, signifying the dollar outcomes. Participants could only 
view the histograms and did not receive feedback otherwise. They 
had to make their choices solely based on other consumers’ prior 
monetary outcomes, similar to consumers choosing digital finan­
cial products based on past consumers’ monetary outcomes on 
financial websites. The section titled Design, Piloting, and 
Presentation of the Behavioral Choice Task  in the SI Appendix  reports 
how we designed and presented the task. Likewise, the SI Appendix  
section titled Development and Validation of the Histograms for the 
Behavioral Choice Task  discusses in detail how the experiential 
ratings and, respectively, monetary outcomes were calculated and 
how the histograms were developed and then validated.  Fig. 2  
illustrates the trial phases of the behavioral choice task. The orig­
inal materials, including the study package and the behavioral 
choice task stimuli, as well as data and code for obtaining the 
reported prediction accuracies, are available through the Open 
Science Framework (OSF): https://doi.org/10.17605/OSF.IO/
PKBV2 .          

Methodological Approach

 We built several different deep-learning models and subjected the 
behavioral and neurophysiological datasets to them in an effort 
to detect differences in the data between experiential and mone­
tary choices on a voxel level. There are several reasons why we 
chose this approach over traditional univariate and multivariate 
analyses in functional neuroimaging research. First, conventional 
methods assume linear relationships between the focal variables, 
which may oversimplify the complexity of decision-making. 
Deep-learning models, by contrast, capture nonlinear interac­
tions, which can offer a more nuanced understanding of the effect 

Fig. 1.   Participants were shown histograms depicting previous consumers’ 
monetary or experiential outcomes. For monetary choices, the heights of the 
bars above a specific loss or winning indicate the number of people who lost 
or won, respectively. For experiential choices, the heights of the bars above a 
number indicate the number of people who gave the song that rating. In the 
main version of the behavioral choice task and unknown to participants, the 
different choice options were identical in magnitude, riskiness, and expected 
value across the two decision domains—experiential versus monetary.
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of the experimental manipulations on neurophysiological activity 
and behavior. Second, traditional approaches aggregate BOLD 
signals into static measures, which essentially discard critical tem­
poral information, while deep-learning models are able to retain 
the temporal structure of the data. Third, univariate and multi­
variate analyses focus on group-level metrics, such as means and 
﻿P-values, which cannot assess individual-level predictive accuracy. 
Deep-learning bridges this gap by directly linking neurophysio­
logical signals to individual choices. Finally, conventional methods 
lack the ability to compare the predictive power of neuroimaging 
data versus behavior. Our approach enables such comparisons, 
which allows us to gauge how much better fMRI data predict 
choice outcomes relative to past behavior.

 The section titled Support Vector Machine  (SVM) in the SI Appendix  
discusses the traditional machine-learning technique we use as base­
line model to compare our deep-learning models to. The SVM ana­
lyzes the activity of multiple voxels in a so-called pattern classification 
task, in contrast to conventional statistical analyses ( 31   – 33 ). We 
demonstrate that our deep-learning models yielded substantial 
improvement in prediction accuracy over the SVM, highlighting the 
magnitude to which these deep-learning models perform better than 
a traditional machine-learning approach (SI Appendix, Table S3 ). Also 

in the SI Appendix , the description of the SVM is followed by a 
description of the input and output formats for each of the four 
deep-learning models and the parameters involved in training each 
of them. Refer to the SI Appendix  titled Four-Dimensional 
Convolutional Neural Network  (4D-CNN), Bi-Directional Long 
Short-Term Memory Networks  (Bi-LSTM), Bi-Directional Long 
Short-Term Memory Network with Conditional Random Field  
(Bi-LSTM-CRF), and Four-Dimensional Convolutional Neural 
Network with Conditional Random Field  (4D-CNN-CRF).

 To provide an overview of our analyses and the following results, 
first, we compare the hippocampus finding to those of the ventral 
striatum, a key brain area previously implicated in monetary 
choices. Second, we analyze the data separately for two distinct 
parts of the hippocampus in order to further scrutinize the role of 
autobiographical memory. Third, to check for the robustness of our 
hypothesis test, we contrast the hippocampus finding with results 
from two brain areas previously linked to risky choices—the insula 
and amygdala. Fourth, also as a robustness check, we compare the 
hippocampal predictions against behavioral data to gauge the added 
predictive performance of neuroimaging data over the predictive 
performance of behavioral data. Fifth, again as another robustness 
check, we evaluate the hippocampus finding against a brain area 

Fig. 2.   Illustration of an experiential and a monetary trial of the behavioral choice task. For each of ten trials of the behavioral choice task, participants were 
first shown a fixation cross, were then prompted to the specific decision domain—either experiential or monetary—for 2 s, were then given 12 s to evaluate a 
high-variance, relatively riskier option and a low-variance, relatively safer option, were then asked to make their choice between the two options for 2 s, and 
were eventually shown a confirmation of their choice for 2 s.
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not previously associated with either experiential or monetary 
choices, the visual cortex. We then proceed to a series of method­
ological evaluations to scrutinize our deep-learning modeling 
approach and results interpretation. First, we perform model com­
parison to identify the best predicting model available for the type 
of behavioral and neuroimaging data available; second, we validate 
our best-performing model using data from an independent 
research group ( 34 ); third, we apply cross-subject validation; and 
fourth, we conduct reverse-inference meta-analyses.  

Behavioral Results

 To scrutinize our theorizing that it is more probable that consum­
ers choose the risky option when making experiential (vs. mone­
tary) choices in the realm of gains, we conducted a random-intercept 
logistic regression with participant as clustering variable and a 
fixed-effects approach ( 35 ). The choice in each trial (risky = 1, safe 
= 0) served as the dependent variable and the decision domain 
(experiential = 1, monetary = 0) served as the independent 

variable. Missed choices were excluded from the analysis. Given 
our directional hypothesis derived from prior research ( 10 ), we 
used one-tailed testing ( 36 ). Results revealed that experiential (vs. 
monetary) decision domain predicted the choice of the risky 
option (b = 0.42, SE = 0.23, z = 1.86, P  = 0.03, odds ratio = 1.52). 
Thus, ceteris paribus, the odds of choosing the risky option were 
52% higher in the experiential versus the monetary decision 
domain. Further, to account for the potential effect of individual 
differences, when allowing the effect of decision domain to vary 
across participants in a mixed-effects logistic regression with a 
random-effects approach, results were highly similar (b = 0.37, 
SE = 0.22, z = 1.65, P  = 0.0498, odds ratio = 1.45), showing that 
results are robust.  

Table  1.   Experiential choices are most accurately 
predicted using data from the hippocampus, whereas 
monetary choices are most accurately predicted using 
data from the ventral striatum

Brain areas

Percentage prediction accuracies 
and SE

Experiential
choices

Monetary
choices

 Hippocampus ﻿71.3 ± 3﻿  56.7 ± 3

 Ventral striatum  66.3 ± 3 ﻿61.3 ± 3﻿

﻿   Ratios of percentage prediction 
accuracies   between brain areas 

 Hippocampus/ventral 
striatum

 1.08  0.92

Note. Prediction accuracies of best-performing brain areas are highlighted in bold. 
Results are based on using the Bi-LSTM sequential model (cf. SI Appendix, Fig. S4, panel B).

Table  3.   Compared to other brain areas and compared 
to participants’ actual behavior, experiential choices 
are most accurately predicted using data from the 
hippocampus, whereas monetary choices are most 
accurately predicted using data from the ventral striatum

Brain areas

Percentage prediction accuracies 
and SE

Experiential choices
Monetary 

choices

 Behavioral benchmark 
1 (BB1)

 58.0 ± 5  49.7 ± 4

 Hippocampus ﻿68.3 ± 3﻿  54.7 ± 3

 Amygdala  61.1 ± 4  55.4 ± 4

 Insula  60.8 ± 4  53.5 ± 4

 Ventral striatum  64.9 ± 3 ﻿58.6 ± 3﻿

﻿  Ratios of percentage prediction 
accuracies between brain areas 

and BB1
 Hippocampus/BB1  1.18  1.10

 Amygdala/BB1  1.05  1.11

 Insula/BB1  1.05  1.08

 Ventral striatum/BB1  1.12  1.18
Note. Prediction accuracies and percentage improvements over BB1 of best-performing 
brain areas are highlighted in bold. Results are based on using the Bi-LSTM individual 
model (cf. SI Appendix, Fig. S4, panel A) for prediction. BB1 represents a simple algorithm 
that predicts the most common choice in held-out behavioral data based on behavioral 
data (see the SI Appendix for the exact definition of BB1).

Table  2.   Experiential choices are more accurately 
predicted using data from the posterior part of the 
hippocampus when compared to data from its anterior 
counterpart

Brain areas

Percentage prediction accuracies 
and SE

Experiential
choices

Monetary
choices

 Posterior hippocampus ﻿67.7 ± 3﻿  54.2 ± 3

 Anterior hippocampus  60.2 ± 4  52.6 ± 3

 Ventral striatum  64.9 ± 3 ﻿58.6 ± 3﻿

﻿   Ratios of percentage prediction 
accuracies   between brain areas 

 Posterior/anterior 
hippocampus

 1.12  1.03

 Posterior hippocam-
pus/ventral striatum

 1.04  0.92

 Anterior hippocampus/
ventral striatum

 0.93  0.90

Note. Prediction accuracy of best-performing brain area is highlighted in bold. Results 
are based on using the Bi-LSTM individual model (cf. SI  Appendix, Fig.  S4, panel A) for 
prediction.

Table  4.   Experiential choices are more accurately 
predicted using data from the hippocampus when 
compared to data from the visual cortex

Brain areas

Percentage prediction accuracies 
and SE

Experiential
choices

Monetary
choices

 Hippocampus ﻿68.3 ± 3﻿  54.7 ± 3

 Visual cortex  57.1 ± 4  54.0 ± 4

﻿   Ratios of percentage prediction 
accuracies   between brain areas 

 Hippocampus/visual 
cortex

 1.20  1.01

Note. Prediction accuracy of best-performing brain area is highlighted in bold. Results 
are based on using the Bi-LSTM individual model (cf. SI  Appendix, Fig.  S4, panel A) for 
prediction.
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Neurophysiological Results

 We then proceeded to test our neurophysiological hypothesis. For 
details on Neuroimaging Data Collection, Voxel Selection and 
Definition of Volumes of Interest , and Neuroimaging Data Extraction , 
refer to the respective sections in the SI Appendix . 

Neurophysiological Hypothesis Test 1: Hippocampal Versus 
Ventral Striatal Contributions in Experiential Choices. To test our 
theorizing that activation in the hippocampus selectively predicts 
experiential choices, in the realm of gains, when compared to 
monetary ones, we applied our Bi-LSTM deep-learning model to 
fMRI data collected during decision-making on both experiential 
and monetary gains. For comparison, we extracted data from the 
ventral striatum (including the nucleus accumbens) based on seminal 
research that identified this region as a key predictor of monetary risk-
seeking behavior (1, 2). We extracted functional neuroimaging data 
from the ventral striatum (refer to the section titled Voxel Selection and 
Definition of Volumes of Interest in the SI Appendix for details on how 
the location of the ventral striatum was defined). Our results support 
the earlier work, demonstrating that monetary choices under risk are 
best predicted using data from the ventral striatum (61.3% prediction 
accuracy). However, for experiential choices, and in support of our 
hypothesis, we found that experiential choices are most accurately 
predicted using data from the hippocampus (71.3% prediction 
accuracy). Table 1 shows that hippocampal data predict experiential 
choices with approximately 8% greater accuracy than ventral striatal 
data—whereas for monetary choices, ventral striatal activity yields 
a superior prediction accuracy compared to the hippocampus. This 
pattern supports our hypothesis that the hippocampus (vs. the 
ventral striatum) contributes differently to predicting risk preferences 
depending on whether choices are experiential or monetary in nature.

Neurophysiological Hypothesis Test 2: Posterior Hippocampal 
Contributions in Experiential Choices. Next, to further scrutinize 
our hypothesis that activation in the hippocampus selectively 
predicts experiential choices, we refined our analysis by separating 
the hippocampal data into its posterior and anterior regions (by 
splitting the dataset along the mediolateral axis) to assess their 
individual contributions to predicting experiential choices. We 
had further hypothesized that the posterior hippocampus would 
be a stronger predictor of experiential choices due to its well-
documented role in processing specific episodic memories, 
which are crucial for recalling detailed personal experiences (37). 
Conversely, we expected the anterior hippocampus, which is more 
involved in processing broader, context-dependent memories 
(37, 38), to be less accurate in predicting these choices. Results 
from our Bi-LSTM model lend support to our hypothesis: The 
posterior hippocampus exhibited a notably higher prediction 
accuracy for experiential choices, achieving an approximately 12% 
improvement in prediction accuracy over the anterior part (see 
results in Table 2). This suggests that participants relied heavily on 
the retrieval of specific episodic memories when making decisions 
about experiential options, further substantiating our claim that 
the hippocampus, particularly its posterior region, plays a pivotal 
role in these types of decisions. Of note, predicting monetary 
choices from these data was close to chance, as expected. In 
contrast, the anterior hippocampus showed a lower accuracy 
in predicting experiential choices than its posterior counterpart 
(though still higher than for monetary choices), paralleling its 
association with more generalized memory processing. These 
findings reinforce the distinct neurophysiological mechanisms 

underlying experiential versus monetary choices, with the 
posterior hippocampus being particularly crucial in scenarios 
where detailed personal memories influence decision-making.

Robustness Check 1: Hippocampal Predictions Compared to the 
Insula and Amygdala. Because previous research has implicated 
two other subcortical brain circuits in monetary choices under 
risk, specifically the insula for risk aversion (1, 3) and the amygdala 
for risk framing (39) and risk tracking of the expected values 
of monetary prospects (20), we also compared the predictive 
performance of the hippocampus and ventral striatum to these 
two brain circuits (refer to the section titled Voxel Selection and 
Definition of Volumes of Interest in the SI Appendix for details on 
how the locations of the insula and amygdala were defined). 
Results of our Bi-LSTM model confirmed the hippocampus’ 
superior role in predicting experiential choices when compared 
to the insula and amygdala (Table 3).

Robustness check 2: Hippocampal Predictions Versus Behavioral 
Data. We established a behavioral benchmark (called BB1) to 
compare with the neuroimaging data. This was done by calculating 
the predictive performance of participants’ actual behavior to 
forecast held-out behavioral data. We included behavior as 
comparison to test whether data from the hippocampus can better 
predict future behavior than past behavior can predict future 
behavior, addressing the commonly held assumption that people’s 
past behavior is the best predictor of their future behavior (40, 41) 
and contributing to a long-standing debate in neuroeconomics and 
consumer neuroscience (42): To what extent is fMRI data better 
at predicting people’s future behavior than their past behavior is? 
Results revealed that compared to all other brain areas previously 
implicated in choices under risk, experiential choices are still most 
accurately predicted using data from the hippocampus (68.3% 
prediction accuracy), whereas monetary choices are most accurately 
predicted using data from the ventral striatum (58.6% prediction 
accuracy). Results also showed that data from the hippocampus 
predict experiential choices better than behavioral data on past 
experiential choices (58.0 % prediction accuracy from behavioral 
data) and that data from the ventral striatum predict monetary 
choices better than behavioral data from past monetary choices 
(49.7% prediction accuracy from behavioral data). Table  3 
summarizes these findings. To enhance robustness, the SI Appendix 
reports two additional behavioral benchmarks for comparison (BB2 
and BB3; SI Appendix, Tables S2 and S3).

Robustness Check 3: Hippocampal Predictions Compared to 
the Visual Cortex. To further clarify the unique contribution of 
the hippocampus in guiding experiential choices, we extracted 
functional neuroimaging data from the visual cortex as a control 
region. Unlike the hippocampus—which is implicated in 
memory—the visual cortex is primarily involved in processing 
visual information (43) and has not been distinctly associated with 
either experiential or monetary choices in previous research. Its 
functional profile makes the visual cortex an ideal benchmark to 
test whether the predictive power for experiential choices is specific 
to hippocampal activity (refer to the section titled Voxel Selection 
and Definition of Volumes of Interest in the SI Appendix for details 
on how the location of the visual cortex was defined). In further 
support of our hypothesis, results revealed that experiential choices 
are more accurately predicted using data from the hippocampus 
than using data from the visual cortex, with a 20% improvement 
in prediction accuracy (Table 4).
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Methodological Evaluation 1: Performance Comparison Between 
Models. Our results were examined using multiple machine- and 
deep-learning models. Because the nature of our behavioral task 
was sequential (i.e., it employed a repeated-measures experimental 
design), we attempted to capture this sequential information in 
our models. We did so in two ways: First, we built a deep-learning 
model that captures the sequential information by jointly modeling 
all the choices made by an individual (i.e., Bi-LSTM with sequential 
choices). Second, we integrated a so-called Conditional Random 
Field (CRF)—a technique from natural language processing 
research—in our deep-learning architectures, which captures the 
choice transitions between the ten choices participants made 
as well as the likelihood of a choice happening in a particular 
trial (i.e., 4D-CNN-CRF and Bi-LSTM-CRF). Results revealed 
substantial improvements over those models that do not incorporate 
such sequential information (SI Appendix, Table S3). Refer to the 
SI Appendix with the same heading name for a detailed description 
of our approach and results.

Methodological Evaluation 2: Model Validation using Indepen­
dently Collected Data. We were also curious whether our best- 
predicting models would yield substantial performance improve­
ments in secondary fMRI data on decision-making under risk 
collected by an independent author team. This helped us to 
ensure model robustness and to further scrutinize the validity 
of our findings. As a result, we applied our best-performing 
models to publicly available fMRI data on decision-making 
under risk generated by an independent research team (34). 
Results demonstrated the robustness of our models by being able 
to show substantial performance improvements across different 
models (SI Appendix, Table S4). Refer to the SI Appendix with 
the same heading name for a detailed description of our approach 
and results.

Methodological Evaluation 3: Cross-Subject Validation. To 
advance the generalizability of neuroimaging findings to the broader 
population, we conducted cross-subject validation. This analysis 
revealed that using fMRI data from a new, unseen individual, our 
best-performing model can predict with 61.7% accuracy whether 
the person made any choice under risk, without prior knowledge 
of their actual behavior (SI Appendix, Table S5). This represents a 
substantial improvement over pure chance and traditional machine-
learning approaches. Refer to the SI Appendix with the same heading 
name for a detailed description of our approach and results.

Methodological Evaluation 4: Reverse-Inference Meta-Analyses. 
Although our study followed the deductive-reasoning approach 
of fMRI studies (44) and was guided by established psychological 
interpretations of brain function, we further validated our 
hypothesis by conducting reverse‐inference meta‐analyses using 
Neurosynth (45, 46), which revealed robust associations between 
hippocampal activation and autobiographical memory processing 
(left hippocampus: z = 8.76, posterior probability = 0.86; right 
hippocampus: z = 7.29, posterior probability = 0.70) and, thus, 
reinforced the long‐standing evidence linking the hippocampus 
with autobiographical memory (11–14). Refer to the SI Appendix 
with the same heading name for a detailed description of our 
approach and the results in SI Appendix, Table S6.

Discussion

 This research makes contributions to our understanding of the neu­
rophysiology of people’s choices under risk, especially in the context 
of everyday experiences. By integrating behavioral and fMRI data, 

we reveal that experiential choices fundamentally differ from 
 monetary ones. Specifically, we found that people rely on the 
 hippocampus—a region crucial for autobiographical memories— 
to make experiential decisions. While prior research has long rec­
ognized that risk preferences are context-dependent ( 8 ,  10 ,  47 ), 
our findings extend this perspective by providing neurophysio­
logical evidence that memory retrieval processes can shape expe­
riential choices differently compared to monetary ones. In 
particular, hippocampal activation may reflect the retrieval of 
salient memories that function as personalized reference points, 
which highlights how underlying neurophysiological mechanisms 
of risk preferences can vary depending on the nature of the choice.

 Furthermore, our findings associate with the broader understand­
ing of hippocampal involvement in memory retrieval, particularly 
in differentiating posterior from anterior functions. Although our 
task required participants to interpret textual and numerical infor­
mation, we did not explicitly measure personal autobiographical 
recall, nor did we isolate semantic from episodic memory processes. 
Rather, the contrast between posterior and anterior hippocampal 
activation in our data resonates with findings suggesting that the 
posterior hippocampus is more strongly associated with detailed, 
episodic-like retrieval, whereas the anterior portion underpins 
broader, context-dependent processing ( 37 ). We acknowledge that 
these results do not resolve debates about whether semantic and 
episodic memory rely on the same or different neurophysiological 
substrates, but they contribute to a more nuanced view of hip­
pocampal subregions during experiential decision-making.

 A methodological contribution of this research is to offer tech­
niques for assessing how well machine- and deep-learning models 
predict and whether the information that these models learn is 
actually meaningful. This contribution is important because psy­
chologists, neuroeconomists, and consumer neuroscientists have 
asked how to establish benchmarks to evaluate their models’ per­
formance ( 42 ). In other words, against what threshold are we com­
paring our neuroimaging results? In the present work, we compared 
our models’ prediction accuracy against three behavioral bench­
marks. First, by comparing model prediction accuracy to that of 
predicting the most probable choice every time (here, the choice of 
the relatively riskier option), we address the potential bias that par­
ticipants may be more likely to make a specific choice. Second, by 
comparing model performance to the sequence obtained by choos­
ing the most probable choice at a particular stage in the experiment, 
we account for task-related biases, such as the fatigue participants 
experienced toward the end of our task as a result of having made 
several choices in sequence. Third, we account for another potential 
bias that stems from the deep-learning models’ knowledge of the 
sequence of stimuli presented to participants by comparing our 
model prediction accuracies with the sequence computed using 
CRF. In summary, we offer three comparison standards for neuro­
imaging data vis-á-vis behavioral data. These comparison standards 
contribute to the long-standing database about how well fMRI data 
predicts future behavior compared to past behavior  (42) .

 Another methodological contribution is how we validate our 
results. One approach used in prior research is that of single- 
subject validation, in which results are validated using reserved 
data from the same subject  ( 48   – 50 ). Herein, we have developed 
a cross-subject validation approach in which results are validated 
using data from another subject . Even though cross-subject val­
idation allows for greater applicability and generalizability than 
single-subject validation ( 33 ,  51 ,  52 ), there have been few sys­
tematic attempts to make use of it in prior work. This study uses 
cross-subject validation in this context, with our models trained 
by excluding the data of a certain participant and then predicting 
their choices.  D
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Conclusion

 To conclude, by integrating behavioral and fMRI data, this study 
underscores that experiential risk-taking engages the hippocampus— 
crucial for autobiographical memory—whereas monetary choices 
rely more on the ventral striatum. These findings reinforce that 
risk preferences are not one-size-fits-all but depend on whether 
decisions hinge on recalling past experiences or evaluating imme­
diate rewards. Beyond supporting literature on hippocampal 
involvement in memory, our results therefore highlight its active 
role in guiding everyday consumer choices and point to the impor­
tance of context-specific neurophysiological mechanisms. Notably, 
this suggests that the hippocampus does more than merely retrieve 
memories; it can help shape future-oriented experiential decision-
making and thus signal a rich interplay between memory pro­
cesses, experiential consumption, and risk behavior.  

Materials and Methods

Fifty-two participants (University of Arizona students) performed a behavio-
ral choice task while their BOLD responses were measured using functional 
MRI (fMRI). All provided informed consent (University of Arizona IRB), were 
screened for MRI eligibility, and had normal or corrected-to-normal vision. 
A within-subject, repeated-measures experimental design manipulated 
decision domain (experiential, monetary), with high-variance (riskier) versus 
low-variance (safer) histogram options. Participants practiced the task before 

scanning on a Siemens 3 T Skyra, then made five experiential and five monetary 
choices in pseudorandom order. Experiential choices involved rating outcomes 
(–5 to +5) for songs; monetary choices involved monetary outcomes (–$5 to 
+$5) from games of chance. Each trial displayed two histograms representing 
past consumers’ ratings or, respectively, monetary outcomes. BOLD responses 
were measured at designated regions of interest, with the outcome being 
selection of the riskier or safer option.

Data, Materials, and Software Availability. Original materials, including 
the study package and the behavioral choice task stimuli, as well as data and 
code for obtaining the reported prediction accuracies have been deposited 
in Open Science Framework (https://doi.org/10.17605/OSF.IO/PKBV2) (53).  
The SI Appendix provides additional detail and specifies the model architectures.
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